Complete stagnation of GMRES for normal matrices
نویسندگان
چکیده
منابع مشابه
The worst-case GMRES for normal matrices
We study the convergence of GMRES for linear algebraic systems with normal matrices. In particular, we explore the standard bound based on a min-max approximation problem on the discrete set of the matrix eigenvalues. This bound is sharp, i.e. it is attainable by the GMRES residual norm. The question is how to evaluate or estimate the standard bound, and if it is possible to characterize the GM...
متن کاملOn a Non-stagnation Condition for Gmres and Application to Saddle Point Matrices
In Simoncini and Szyld [Numer. Math., 109 (2008), pp. 477–487] a new non-stagnation condition for the convergence of GMRES on indefinite problems was proposed. In this paper we derive an enhanced strategy leading to a more general non-stagnation condition. Moreover, we show that the analysis also provides a good setting to derive asymptotic convergence rate estimates for indefinite problems. Th...
متن کاملConvergence of GMRES for Tridiagonal Toeplitz Matrices
Abstract. We analyze the residuals of GMRES [9], when the method is applied to tridiagonal Toeplitz matrices. We first derive formulas for the residuals as well as their norms when GMRES is applied to scaled Jordan blocks. This problem has been studied previously by Ipsen [5], Eiermann and Ernst [2], but we formulate and prove our results in a different way. We then extend the (lower) bidiagona...
متن کاملStagnation of block GMRES and its relationship to block FOM
We analyze the the convergence behavior of block GMRES and characterize the phenomenon of stagnation which is then related to the behavior of the block FOM method. We generalize the block FOM method to generate well-defined approximations in the case that block FOM would normally break down, and these generalized solutions are used in our analysis. This behavior is also related to the principal...
متن کاملMorning Session I the Convergence of Restarted Gmres for Normal Matrices
Breakfast and Registration: 8:30 9:00 Morning Session I Room 1312 9:00 11:00 9:00 9:20 Eugene Vecharynski The Convergence of Restarted GMRES University of Colorado at Denver for Normal Matrices is Sublinear 9:25 9:45 Adrianna Gillman The Numerical Performace of a Mixed-Hybrid University of Colorado at Boulder Type Solution Methodology for Solving High-Frequency Helmholtz Problems 9:50 10:10 Sri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2014
ISSN: 0377-0427
DOI: 10.1016/j.cam.2013.12.018